Gramazio Kohler Research
Offene Stellen
Modeling: reducing, testing, experiencing architecture
Immersives Studio - FS23
Immersive explorations of architectural acoustics II
Computational Design III-IV HS22/FS23
The Digital in Architecture II HS22
Immersives Studio - HIL-Z HS22
Modeling: reducing, testing, experiencing architecture
Immersive explorations of architectural acoustics
MAS DFAB: Eggshell Pavilion
The Digital in Architecture I FS22
Augmented Realities - Worldmaking 4
The Digital in Architecture II HS21
Augmented Realities - Worldmaking 3
Robotic 360° Light Painting
Das Digitale in der Architektur I FS21
Das Digitale in der Architektur II HS20
MAS DFAB: Rapid Clay Formations (Brunnen)
Das Digitale in der Architektur I FS20
Seminar Week FS20
MAS DFAB: Rapid Clay Formations (Rio)
Das Digitale in der Architektur II HS19
Robotic Landscapes III
MAS DFAB: Up Sticks
Seminarwoche HS19
Das Digitale in der Architektur FS19
Seminarwoche FS19
Das Digitale in der Architektur II HS18
Robotic Landscapes II
Rapid Clay Formations
Zero-Waste Geometry
Seminarwoche HS18
ROB|ARCH 2018 Workshop
MAS DFAB: Gradual Assemblies
Das Digitale in der Architektur FS18
Robotic Landscapes I
Malleable Voxels
MAS DFAB: minijammed
MAS DFAB: Brick Labyrinth
MAS DFAB: Robotic Pavilion
Force-adaptive Wire Cutting
Spatial Extrusions 2
Spatial Extrusions
Graded Structures 2
Graded Structures
Robotic Wire Cutting Summerschool
Spatial Wire Cutting
Extruded Structures
Remote Material Deposition Installation
Remote Material Deposition
Depth Modulations 2
Design of Robotic Fabricated High Rises 2
Depth Modulations
Complex Timber Structures 2
Complex Timber Structures 1
Robotic Metal Aggregations
Shifted Frames 2
Design of Robotic Fabricated High Rises 1
Shifted Frames 1
Spatial Aggregations 2
Spatial Aggregations 1
Robotic Clay Molding
Die fragile Struktur 2
Die fragile Struktur 1
Prozedurale Landschaften 2
Prozedurale Landschaften 1
Seminar Week FS11
Die Verzahnung 2
Die Verzahnung 1
Das sequentielle Tragwerk 2
Das sequentielle Tragwerk 1
Explicit Bricks
Die programmierte Säule 2
Die programmierte Säule 1
Freilicht Theater
Voxels 2
Voxels 1
Die Wandöffnung 2
Die Wandöffnung 1
Die sequenzielle Wand 2
Die sequenzielle Wand 1
Der Schaum
Die fraktale Wand
Die aufgelöste Wand
Seminar Week
Die perforierte Wand 2
Die perforierte Wand 1
Die programmierte Wand
Das schiefe Loch

Eggshell Pavilion, Vitra Design Museum, Weil am Rhein, 2022
The Eggshell Pavilion explores how digital design techniques and robotic 3D printing enable the creation of freeform concrete structures using recycled ultra-thin formwork. The pavilion’s design and fabrication are based on the Eggshell technology, which relies on computational methods to design algorithms that generate both the geometry of the structure and the fabrication data for the 3D-printing process. The combination of computational design and robotic fabrication allows designers to shape concrete elements efficiently, in contrast to traditional formwork processes that are often labour- and cost-intensive.

The ultra-thin formwork for the building elements of the Eggshell Pavilion is only three to five millimetres strong. It is made from glass fibre reinforced PET-G partly recycled from previous Eggshell formworks. It took approximately six hours to print each of the four columns and up to sixteen hours to print each of the four slabs. Both the columns and the floor slabs are reinforced with conventional steel reinforcement. They are connected using reversible connections, which allows the pavilion to be dismantled for reassembly in another location.

The elements are cast from two different types of concrete. The columns are cast from fast-setting concrete using a digitally controlled casting process. The fast-setting concrete reduces the pressure on the formwork to a minimum, making it possible to use a thin 3D-printed formwork without risk of breakage. The floor slabs, on the other hand, are cast from conventional self-compacting concrete, as there is only limited formwork pressure because of the low height. Once the concrete has fully hardened, the formwork is removed, washed, shredded, and re-compounded for reuse in new 3D prints.

The pavilion was designed and fabricated in collaboration with the students of the MAS course in Architecture and Digital Fabrication at ETH Zurich. Its construction emphasises the design possibilities offered by 3D-printed formwork combined with conventional reinforcement and assembly methods. It demonstrates how the Eggshell technology can be used as an industrially scalable system for material-efficient concrete structures, paving the way towards a more sustainable use of concrete in construction.

Gramazio Kohler Research, ETH Zurich
Joris Burger (project lead research), Petrus Aejmelaeus-Lindström (project lead teaching), Guillaume Jami.

Vasileios Aloutsanidis, El Mehdi Belyasmine, Ananya Kango, Che Wei Lin, Wenjun Liu, Erika Marthins, Nikolaos Maslarinos, Gabriele Mattei, Andrea Victoria Mendoza, Chris Norcross, Muslima Rafikova, Joaquin Tobar Martinez, Katarina Toumpektsi, Jingwen Wang, Ming Yang Wang, Vincent Wörndl, Hanbing Zhao
In cooperation with: Nicolas Fehlmann Ingénieurs Conseils SA (Dr. Filip Niketi), Physical Chemistry of Building Materials, ETH Zurich –- Professor. Dr. Robert J. Flatt (Seyma Gürel Saydam)
Selected Experts: Marc Akermann (IWK Institut für Werkstofftechnik und Kunststoffverarbeitung - Professor. Daniel Schwendemann), Theo Bürgin (Bürgin Creations)
Support: Philippe Fleischmann, Michael Lyrenmann, Tobias Hartmann (Robotic Fabrication Laboratory, ETH Zurich), Andreas Reusser (Physical Chemistry of Building Materials, ETH Zurich)
Sponsors: ABB, Debrunner Acifer Bewehrungen, Holcim, Krinner, MÜLLER-STEINAG ELEMENT AG, NFIC, SACAC AG, Welti Furrer

Copyright 2022, Gramazio Kohler Research, ETH Zurich, Switzerland
Gramazio Kohler Research
Professur für Architektur und Digitale Fabrikation
ETH Zürich HIB E 43
Stefano-Franscini Platz 1 / CH-8093 Zürich

+41 44 633 49 06
Follow us on:
Vimeo | Instagram