Gramazio Kohler Research
News
Lehre
Forschung
Projekte
Publikationen
About
Team
Offene Stellen
Kontakt
Grundlagenfach HS/FS
Entwurf V-IX HS
Wahlfach HS
Kernfach HS
Wahlfach HS
MAS DFAB: #caschlatsch
Seminarwoche 1 HS
Seminarwoche 2 HS
Kernfach FS
Grundlagenfach HS/FS
Architectural Design V-IX SS
Wahlfach FS
Entwurf V-IX HS
Wahlfach HS
Kernfach HS
Seminarwoche HS
Wahlfach FS
Vertiefung Fachwissen FS
Grundlagenfach HS/FS
Entwurf V-IX FS
Seminarwoche FS
Kernfach HS
Entwurf V-IX HS
Wahlfach HS
Seminarwoche HS
MAS DFAB: Eggshell Pavilion
Kernfach FS
Seminarwoche FS
Kernfach HS
Seminarwoche HS
Workshop USA
Kernfach FS
Kernfach HS
MAS DFAB: Rapid Clay Formations II
Kernfach FS
Seminarwoche FS20
MAS DFAB: Rapid Clay Formations I
Kernfach HS
Robotic Landscapes III
MAS DFAB: Up Sticks
Seminarwoche HS
Kernfach FS
Seminarwoche FS19
Kernfach HS
Entwurfsstudio HS
Rapid Clay Formations
Zero-Waste Geometry
Seminarwoche HS
ROB|ARCH Workshop
MAS DFAB: Gradual Assemblies
Kernfach FS
Robotic Landscapes I
Malleable Voxels
MAS DFAB: minijammed
Seminarwoche HS
MAS DFAB: Brick Labyrinth
MAS DFAB: Robotic Pavilion
Force-adaptive Wire Cutting
Spatial Extrusions 2
Spatial Extrusions
Graded Structures 2
Graded Structures
Robotic Wire Cutting Summerschool
Spatial Wire Cutting
Extruded Structures
Remote Material Deposition Installation
Remote Material Deposition
Depth Modulations 2
Design of Robotic Fabricated High Rises 2
Depth Modulations
Complex Timber Structures 2
Complex Timber Structures 1
Robotic Metal Aggregations
Shifted Frames 2
Design of Robotic Fabricated High Rises 1
Shifted Frames 1
Spatial Aggregations 2
Spatial Aggregations 1
Robotic Clay Molding
Die fragile Struktur 2
Die fragile Struktur 1
Prozedurale Landschaften 2
Prozedurale Landschaften 1
Seminar Week FS11
Die Verzahnung 2
Die Verzahnung 1
Das sequentielle Tragwerk 2
Das sequentielle Tragwerk 1
Explicit Bricks
Die programmierte Säule 2
Die programmierte Säule 1
Freilicht Theater
Voxels 2
Voxels 1
Die Wandöffnung 2
Die Wandöffnung 1
Die sequenzielle Wand 2
Die sequenzielle Wand 1
Akustik
Der Schaum
Die fraktale Wand
Bauzaun
Die aufgelöste Wand
Seminar Week
Die perforierte Wand 2
Die perforierte Wand 1
Die programmierte Wand
Das schiefe Loch


Semiramis, Tech Cluster Zug, 2020-2022
Semiramis is an architectural installation designed with artificial intelligence that has been constructed in 2022 at the entrance of a new Tech Cluster Zug, Switzerland. As a herald for the increasingly interwoven collaboration between machines and humans, it aims to go beyond usual urban programs and it rises as a vertical urban habitat reserved for plants and small local animals. By dwelling between the artificial and the natural, Semiramis has been established through a manifold of synergies and research projects in the fields of interactive computational design, machine learning, and digital fabrication. On a formal level, the structure is 22.5 meters in height without vegetation and is composed of five amorphous wooden pods sustained by 8 thin steel pillars.

Design and fabrication
Thanks to a bespoke machine learning design method created by our chair in collaboration with the Swiss Data Science Center, the team could interactively extrapolate the most effective design variations for the generation of the overall spatial composition of Semiramis. The performance criteria were based on parameters such as sunshade, rain occlusion, and plantable surface.
Parallelly, thanks to the cooperation with the Computational Robotics Lab, we developed a custom tool that has allowed us to optimize the single pods’ shape by interactively controlling their complex geometry while considering relevant material and fabrication parameters. For example, it maintains the individual panels flat and respects the possible range of their individual sizes while improving structural load capacity.

Eventually, the cross-laminated timber plates are robotically assembled with a novel assembly procedure that has been created by Gramazio Kohler Research, ETH Zurich, together with TS3, and the Chair for Timber Structures at ETH Zurich. This process allows butt joint bonding of wood, thus making the production of large areas of complex folded wood structures possible.

The robotic assembly of Semiramis will also represent a milestone in the history of Gramazio Kohler Research. In fact, for the first time ever at the Robotic Fabrication Lab at ETH Zurich, four robots will work simultaneously in an unprecedented additive manufacturing process. Our team closely collaborated with Intrinsic, building integrations between their robot planning technology and COMPAS FAB, our open-source robotic fabrication package.

Questions on nature
The vertical, landscaping concept within the pods has been ideated together with and implemented by Müller Illien Landscape Architects Gmbh. Nature will have the chance to grow undisturbed: people cannot access the pagoda-like pods. Our only chance to admire the new living and morphing ecosystem is as hosts and passers-by. For the moment, just from underneath, and in the future, also from the surrounding buildings that will rise around it.

Semiramis is a precursor in the new urban area of the Tech Cluster Zug, as the adjacent buildings will be erected during subsequent years and decades. Apart from being an installation that wishes to question and reflect on our complex relationship with nature, Semiramis will provide a retreat and gathering place underneath its surfaces for the workers and inhabitants of this area of Zug. Thanks to its green densification, which is regulated through a centralized irrigation system, the light will be filtered and will create various degrees of shades on the ground while offering a comfortable microclimate in the hottest months of the year.

Weitere Dokumente (auf Deutsch):
Medienmitteilung, 23.11.2021, ETH Zurich

Hintergrundinformationen zu den Kerninnovationen

Credits:
Gramazio Kohler Research, ETH Zürich

In Zusammenarbeit mit: Müller Illien Landschaftsarchitekten, Timbatec Timber Construction Engineers Switzerland
Auftraggeber: Urban Assets Zug AG
Mitarbeiter: Sarah Schneider (project lead), Matteo Pacher (fabrication lead), Aleksandra Apolinarska, Pascal Bach, Gonzalo Casas, Philippe Fleischmann, Matthias Helmreich, Michael Lyrenmann, Beverly Lytle, Romana Rust, Ziqi Wang.
Ausgewählte Experten: Stelian Coros, Krispin Wandel, Bernhard Thomaszewsky, Roi Poranne (Computational Robotics Lab, ETH Zurich), Luis Salamanca, Fernando Perez-Cruz (Swiss Data Science Center), Chair for Timber Structures, ETH Zurich.
Ausgewählte Unternehmer: Erne AG Holzbau
Industrie Partner: TS3 AG, Intrinsic

Copyright 2024, Gramazio Kohler Research, ETH Zurich, Switzerland
Gramazio Kohler Research
Professur für Architektur und Digitale Fabrikation
ETH Zürich HIB E 43
Stefano-Franscini Platz 1 / CH-8093 Zürich

+41 44 633 49 06
Follow us on:
Vimeo | Instagram