Gramazio Kohler Research
Open Positions
Architectural Design V-IX AS
MAS DFAB: #caschlatsch
Core Course SS
Basic Course AS/SS
Architectural Design V-IX SS
Elective Course SS
Architectural Design V-IX AS
Elective Course AS
Core Course AS
Seminar Week AS
Elective Course SS
Subject Specialisation SS
Computational Design III-IV
Architectural Design V-IX SS
Seminar Week FS
Core Course AS
Architectural Design V-IX AS
Elective course HS22
Seminar Week AS
MAS DFAB: Eggshell Pavilion
Core Course SS
Seminar Week SS
Core Course AS
Seminar Week AS
Workshop USA
Core Course SS
Core Course AS
MAS DFAB: Rapid Clay Formations II
Core Course SS
Seminar Week SS
MAS DFAB: Rapid Clay Formations (Rio)
Core Course AS
Robotic Landscapes III
MAS DFAB: Up Sticks
Seminar Week AS19
Core Course SS
Seminar Week SS
Core Course AS
Architectural Design V-IX AS
MAS DFAB: Rapid Clay Formations
Zero-Waste Geometry
Seminar Week AS
ROB|ARCH 2018 Workshop
MAS DFAB: Gradual Assemblies
Core Course SS
Robotic Landscapes I
Malleable Voxels
MAS DFAB: minijammed
Seminar Week AS
MAS DFAB: Brick Labyrinth
MAS DFAB: Robotic Pavilion
Force-Adaptive Wire Cutting
Spatial Extrusions 2
Spatial Extrusions
Graded Structures 2
Graded Structures
Robotic Wire Cutting Summerschool
Spatial Wire Cutting
Extruded Structures
Remote Material Deposition Installation
Remote Material Deposition
Depth Modulations 2
Design of Robotic Fabricated High Rises 2
Depth Modulations
Complex Timber Structures 2
Complex Timber Structures 1
Robotic Metal Aggregations
Shifted Frames 2
Design of Robotic Fabricated High Rises 1
Shifted Frames 1
Spatial Aggregations 2
Spatial Aggregations 1
Robotic Clay Molding
The Fragile Structure 2
The Fragile Structure 1
Procedural Landscapes 2
Procedural Landscapes 1
Seminar Week
The Interlocking 2
The Interlocking 1
The Sequential Structure 2
The Sequential Structure 1
Explicit Bricks
The Programmed Column 2
The Programmed Column 1
Open Air Theater
Voxels 2
Voxels 1
The Opening 2
The Opening 1
The Sequential Wall 2
The Sequential Wall 1
The Foam
The Resolution Wall
Construction Hoarding
The Dissolved Wall
Domoterra Lounge
The Perforated Wall 2
The Perforated Wall 1
The Programmed Wall
The Oblique Hole

Touch Wood, Zentrum Architektur Zurich Bellerive (ZAZ), 2022
Augmented Acoustics
The project Augmented Acoustics combines computational design with an innovative augmented fabrication system. On the occasion of the Touch Wood exhibition at the ZAZ Bellerive - Zentrum Architektur Zurich, we designed a 5.3m long and 2.5m high Acoustic Wall. Positioned at the vaulted entry hall of the ZAZ Bellerive, the new Acoustic Wall was specifically designed for this exhibition. It improves the speech intelligibility for presentations while giving a dynamic background to the main hall. The Acoustic Wall is composed of 1444 identical timber blocks and assembled with an augmented assembly process.

In a first step, the computational design software articulates the timber blocks on a given base curve, allowing for the specification of the length, the height, and the number of timber blocks within the acoustic wall. In addition, it is possible to define additional parameters, such as the degree of acoustic diffusion, the custom pattern image, and the gap distribution of the bond.
This latter makes it possible to freely specify the length and curvature of the wall depending on the architectural context. The acoustic diffusion, which is based on the Schroeder diffuser, is achieved by shifting the timber blocks back and forth along their longitudinal axis.
The gray value of the pattern image controls and indicates the rotation of each individual timber block. Depending on the rotation and how the light hits their surface, the timber blocks are represented by white or black pixels. For Touch Wood, we took inspiration from the tangential wood grain pattern, in which the blocks rotated towards the light (white pixels) represent the early wood grain, and those that are rotated in the opposed direction (black pixels) represent the late wood. All parameters can be adjusted independently from each other.

In a second step, the timber blocks were placed by three builders in a synchronous augmented assembly process utilising the latest Augmented Reality system by ETH Spin-off

The software runs on a smartphone and enables the builders to visualise the building instructions directly on the screen in a 1:1 overlay of each timber block. Subsequently, the builders were instructed on the glue deposition area and the accurate placement of the timber blocks.

The Acoustic Wall was prefabricated at the Robotic Fabrication Lab at ETH Zurich and deconstructed into 25 transportable segments to be placed and fully glued in its final position at ZAZ Bellerive. The Acoustic Wall at the cafeteria of Basler & Hofmann in Esslingen, Switzerland in 2019 demonstrates the appliance of the method in a different context.

Augmented Acoustics, Esslingen, 2019

Touch Wood, ZAZ Bellerive

Gramazio Kohler Research, ETH Zurich
Prof. Fabio Gramazio, Prof. Matthias Kohler, Matthias Helmreich, Sarah Schneider, Alessandra Gabaglio, Alexandra Anna Apolinarska

In cooperation with:, ERNE AG Holzbau

Sponsors: Basler & Hofmann AG, Swiss Timber Engineers

Copyright 2024, Gramazio Kohler Research, ETH Zurich, Switzerland
Gramazio Kohler Research
Chair of Architecture and Digital Fabrication
ETH Zürich HIB E 43
Stefano-Franscini Platz 1 / CH-8093 Zurich

+41 44 633 49 06
Follow us on:
Vimeo | Instagram