|
|
|
|
|
RobotSculptor, ETH Zurich, 2019-2020
|
PhD research project
|
With the long term goal of endowing robots with human-level skills, the RobotSculptor is a user-guided design and motion planning framework for robotic clay sculpting. This research project has developed an interactive design system that allows users to create and fabricate clay models and designs using a standard 6-axis robot arm (UR5).
The RobotSculptor system is composed of two parts: the path initialization and the path planning optimization. Given a general mesh as input, the user iteratively selects sub-areas of the mesh through decomposition and embeds the design expression into an initial set of toolpaths by modifying key parameters that affect the visual appearance of the sculpted clay surface finish. These parameters were identified and extracted through a series of design experiments, using a customized loop tool to cut the water-based clay material.
In a second step, the initialized toolpaths are fed into the optimization component of our system for optimal path planning. The result is collision-free robotic sculpting motions, which execution creates a surface that matches the target surface, maintaining the design expression.
Publication:
Ma, Zhao, Simon Duenser, Christian Schumacher, Romana Rust, Moritz Bächer, Fabio Gramazio, Matthias Kohler, and Stelian Coros. "RobotSculptor: Artist-Directed Robotic Sculpting of Clay." In Symposium on Computational Fabrication, pp. 1-12. 2020.
PDF
Video: RobotSculptor
|
|
|
|
|
Credits:
|
Gramazio Kohler Research, ETH Zurich
In cooperation with: Disney Research Collaborators: Zhao Ma (project lead), Simon Duenser, Gonzalo Casas, Dr. Christian Schumacher, Dr. Romana Rust, Dr. Moritz Bächer, Dr. Stelian Coros
|
|
De |