Gramazio Kohler Research
News
Research
Teaching
Projects
Publications
About
Team
Open Positions
Contact
Eggshell
Human-Machine Collaboration
Algorithmic Details
Thin Folded Concrete Structures
Deep Timber
Robotic Fabrication Simulation for Spatial Structures
Jammed Architectural Structures
COMPAS FAB
Data Driven Acoustic Design
On-site Robotic Construction
Mesh Mould Metal
Smart Dynamic Casting and Prefabrication
Spatial Timber Assemblies
Robotic Lightweight Structures
Mesh Mould and In situ Fabricator
Complex Timber Structures
Spatial Wire Cutting
Robotic Integral Attachment
Mobile Robotic Tiling
YOUR Software Environment
Aerial Construction
Smart Dynamic Casting
Topology Optimization
Mesh Mould
Acoustic Bricks
TailorCrete
BrickDesign
Echord
FlexBrick
Additive processes
Room acoustics

Adaptive Detailing, ETH Zurich, 2017-2020
PhD Research Project
This research introduces a novel detailing method that enables the design and robotic fabrication of connection details for non-standard metal spatial structures based on information gathered during the assembly process. Rather than producing custom joints for such structures in a separate prefabrication process, the proposed approach enables the creation of connections that are manufactured directly onto building members tailoring the connection detail geometry based on as found conditions. The method is explored through robotic wire arc additive manufacturing (WAAM), a metal 3D printing technique based on MIG welding. The robotic process is coupled with sensing and feedback strategies to allow for local control of the connection geometry. As a result, the method
enables the robust fabrication of connections that can compensate material and construction tolerances. Motivated by increasing new applications of robots for building architectural scale structures, this research aims to contribute new concepts and methods for digital construction by enabling the design and fabrication of locally differentiated architectural structures.
Credits:
Gramazio Kohler Research, ETH Zurich

In cooperation with: NCCR Digital Fabrication, ETH Zurich
Collaborators: Inés Ariza (project lead), Dr. Ammar Mirjan, Philippe Fleischmann, Michael Lyrenmann, Dr. Romana Rust, Gonzalo Casas
Sponsors: Fronius Schweiz AG

Copyright 2016, Gramazio Kohler Research, ETH Zurich, Switzerland
Gramazio Kohler Research
Chair of Architecture and Digital Fabrication
ETH Zürich HIB E 43
Stefano-Franscini Platz 1 / CH-8093 Zurich

+41 44 633 49 06
Follow us on:
Vimeo | Instagram