|
|
|
|
|
Robotic Plaster Spraying, ETH Zurich, 2018-2023
|
PhD research project
|
This research investigates the design potentials of combining plaster with a robotic spraying process and proposes a novel, adaptive thin-layer printing method. Research goals address an on-site construction system that is capable of performing continuous robotic plaster spraying on building elements, without the need for additional formwork or tools used in conventional plastering to produce textural patterns and volumetric formations. To support the understanding of the complex-to-simulate material behavior in this process, systematic studies through physical testing are being conducted in order to collect data by visual sensing. The goal is to understand the influence of parameters such as velocity, angle and distance of spraying on the material behavior. This investigation will enable to inform the design process on the combined effect of the parameters prior to fabrication through a digital visualization tool, and to capture the design space of the proposed method. As such, robotic plaster spraying aims to contribute to the field of additive manufacturing and explore the surfaces of architectural spaces, enhancing the bespoke design potential of plaster with a new digital craft.
Publications:
Selen Ercan Jenny, Lukasz L. Pietrasik, Lukasz, Eliott Sounigo, Ping Tsai, Fabio Gramazio, Matthias Kohler, Ena Lloret-Fritschi, Marco Hutter. "Continuous Mobile Thin-Layer On-Site Printing." Automation in Construction Volume 146, 2023.
PDF
Ercan, Selen, Ena Lloret Fritschi, Fabio Gramazio, Matthias Kohler. "Crafting plaster through continuous mobile robotic fabrication on-site." In Construction Robotics , Ercan, Selen, Ena Lloret Fritschi, Fabio Gramazio, Matthias Kohler, Cham: Springer Nature, 2020.
PDF
Ercan, Selen, Hermann Blum, Abel Gawel, Roland Siegwart, Fabio Gramazio, Matthias Kohler. "Online Synchronization of Building Model for On-Site Mobile Robotic Construction." In 2020 Proceedings of the 37th ISARC, 1508-1514. Edinburgh: International Association for Automation and Robotics in Construction, 2020.
PDF
Ercan, Selen, Sandro Meier, Fabio Gramazio, Matthias Kohler. "Automated Localization of a Mobile Construction Robot with an External Measurement Device." In 2019 Proccedings of the 36th ISARC, 1-8. Banff, Canada: International Association on Automation and Robotics in Construction, 2019.
PDF
|
|
|
|
|
Credits:
|
Gramazio Kohler Research, ETH Zurich
In cooperation with: Robotic Systems Lab (RSL), Autonomous Systems Lab (ASL) and Chair of Geosensors and Engineering Geodesy (GSEG), ETH Zurich Collaborators: Selen Ercan Jenny (project lead), Dr. Ena Lloret-Fritschi, Eliott Sounigo, Ping-Hsun Tsai, Valens Frangez, Philippe Fleischmann, Luca Ebner Sponsors: HILTI AG, Giovanni Russo AG
|
|
De |