|
|
|
|
|
The Resolution Wall, ETH Zürich, 2007
|
Elective Course
|
In this project we investigated the additive construction of a wall made of autoclaved aerated concrete cubes of different sizes, their edge lengths varying from 5 to 40cm. The time needed by the robot to put in place a module is independent of its size, because the required movement path remains the same. The use of large modules can therefore accelerate the building of a wall many times over, but reduces its resolution and thus the possible level of detailing on the surface and in the interior of the component. An intelligent distribution and jointing of different module sizes can resolve the conflict between the aesthetic and functional advantages of the finest resolution, and the economic necessity of the most efficient fabrication process. Small modules can be placed where a high density of information is desired, while areas with low information density can be built quickly and efficiently using large modules. Since a change in resolution typically corresponds to a change of material, the combination of different module sizes in a homogenously materialised construction element has an unusual and stimulating effect. The joint pattern of the walls transmits a sense of the procedural design logic concealed within the depth of the material.
|
|
|
|
|
Credits:
|
Gramazio Kohler Research, ETH Zurich
Collaborators: Tobias Bonwetsch (project lead), Ralph Baertschi, Daniel Kobel, Michael Lyrenmann Students: Marcia Akermann, Gregor Bieri, Stefan Bischof, Eliza Boganski, Philip Bräm, Frank-Olivier Cottier, Andreas Kast, Irene Lo Iacono Industry partner: Ytong
|
|
De |