Gramazio Kohler Research
News
Lehre
Forschung
Projekte
Publikationen
About
Team
Offene Stellen
Kontakt
Compas FAB
Compas Timber
AIXD: AI-eXtended Design
AI-Augmented Architectural Design
Impact Printing
Human-Machine Collaboration
AR Timber Assemblies
Autonomous Dry Stone
Architectural Design with Conditional Autoencoders
Integrated 3D Printed Facade
Robotic Plaster Spraying
Additively Manufactured Facade
Timber Assembly with Distributed Architectural Robotics
Eggshell Benches
Eggshell
CantiBox
RIBB3D
Data Driven Acoustic Design
Mesh Mould Prefabrication
Data Science Enabled Acoustic Design
Thin Folded Concrete Structures
FrameForm
Adaptive Detailing
Deep Timber
Robotic Fabrication Simulation for Spatial Structures
Jammed Architectural Structures
RobotSculptor
Digital Ceramics
On-site Robotic Construction
Mesh Mould Metal
Smart Dynamic Casting and Prefabrication
Spatial Timber Assemblies
Robotic Lightweight Structures
Mesh Mould und In situ Fabricator
Complex Timber Structures
Spatial Wire Cutting
Robotic Integral Attachment
Mobile Robotic Tiling
Software Environments
Aerial Construction
Smart Dynamic Casting
Topologie-Optimierung
Mesh Mould
Acoustic Bricks
TailorCrete
BrickDesign
Echord
FlexBrick
Additive Fabrikation
Raumakustik
Design and Robotic Fabrication of Integrated 3D Printing Facades, 2022
Integrated 3D Printed Facade (I3DPF)
Contemporary construction methods are widely recognized for their significant contributions to CO2 emissions and waste generation. The increasing recognition of climate change and its urgent environmental implications compels stakeholders in the modern construction sector to reassess their methods and innovate toward a sustainable future. Guidelines in this regard include using low embodied energy materials, such as timber, and transitioning from a resource-waste model to one focused on circularity.

Thermoplastics are polymer materials that become pliable or moldable at a specific elevated temperature and solidify upon cooling. For this reason, they have extremely high potential to integrate into a circular economy. In disregard of this potential, very little post-consumer plastic is currently recycled, while most of it is burned for energy recovery, dug in landfills, or lost in the environment. Despite being durable and not easily degradable, plastic continues to be used primarily for single-use applications.

I3DPF is an ongoing research project exploring the transformative role of design in creating high-added-value architectural components starting from waste material. Specifically, the research aims to define how performative and bespoke building facades can be produced using recycled thermoplastics. It focuses on using Large-Scale Robotic 3D Printing (LSR3DP) to create and design expressive facade panels, which allow the inclusion of multiple functionalities (e.g. insulation, solar shading) into a mono-material component. Mono-materiality is notably an important prerequisite for circularity as it simplifies recycling at the end of life.

The concept includes integrating the non-load-bearing facade components into a conventional substructure composed of timber mullions and transoms. The connection between the panels and the substructure uses off-the-shelf curtain wall connections, including gaskets and pressure plates, a solution that guarantees good performances in air and water tightness while ensuring reversibility.

Credits:
Gramazio Kohler Research, ETH Zürich


Copyright 2023, Gramazio Kohler Research, ETH Zurich, Switzerland
Gramazio Kohler Research
Professur für Architektur und Digitale Fabrikation
ETH Zürich HIB E 43
Stefano-Franscini Platz 1 / CH-8093 Zürich

+41 44 633 49 06
Follow us on:
Vimeo | Instagram